APPLICATION OF DERIVATIVES

(SUM 29 TO 33)

                                                   ALL EDUCATION BOARD

Question 29

Without using derivatives show that `f(x)=7x-3 ` is  a  strictly 

   increasing function  on  ` \mathbf{R}`

Answer
Here `\quad f(x)=7 x-3`.
Let `x_1, x_2 \in \mathbf{R}`

 and `x_1<x_2`.
`\therefore \quad f\left(x_1\right)`

=`7 x_1-3`and `f\left(x_2\right)=7 x_2-3`

Now, `x_1<x_2 `

  `Rightarrow 7 x_1<7 x_2 `

 `Rightarrow 7 x_1-3<7 x_2-3`


`\Rightarrow \quad f\left(x_1\right)<f\left(x_2\right)`


Thus `x_1<x_2 \Rightarrow f\left(x_1\right)<f\left(x_2\right)`


Hence, `f(x)`is a strictly increasing function on `\mathbb{R}`.

 Question 30

 Prove that 


`f(x)`=`x^{3}-3 x^{2} + 3x-100x` is increasing on `R`.

Here
`f(x)=x^5+10 x-2 `


` f^{\prime}(x)=5 x^4+10=5\left(x^4+2\right)`


Now, for `x \in \mathbf{R}, \quad x^4 \geq 0 \Rightarrow x^4+2>0`
`
 `Rightarrow `

`5\left(x^4+2\right)>0 `

`Rightarrow `

`f^{\prime}(x)>0`
`
`therefore` f(x)` is a strictly increasing function on `\mathbf{R}`.


Question31  Deternine the intervals in which the following 

functions are strictly increasing or strictly decresing:

`f(x)  =\frac{3}{10} x^4-\frac{4}{5} x^3-3 x^2+\frac{36}{5} x+11 `


Answer       Here
`f(x)  =\frac{3}{10} x^4-\frac{4}{5} x^3-3 x^2+\frac{36}{5} x+11 `
`\therefore \quad f^{\prime}(x)` 

=`\frac{3}{10}\left(4 x^3\right)-\frac{4}{5} \cdot\left(3 x^2\right)-3(2 x)+\frac{36}{5} `


` =\frac{6}{5} x^3-\frac{12}{5} x^2-6 x+\frac{36}{5}`=`\frac{6}{5}\left(x^3-2 x^2-5 x+6\right)`

For` x=1, f^{\prime}(x)=0 \Rightarrow x=1` is a root of `f^{\prime}(x)`


Dividing (1) by `(x-1)`, we get
`f^{\prime}(x)=\frac{6}{5}(x-1)(x+2)(x-3)`

Now `f^{\prime}(x)=0 \Rightarrow x=-2,1`and 3 , which are the critical values.


These values of `x` divide the real line into four disjoint intervals

namely `(-\infty,-2),(-2,1),(1,3)`and `(3, \infty)`.

When `x<-2`,

` \quad(x-1)<0,(x+2)<0,(x-3)<0` 


` \therefore \quad f^{\prime}(x)=(-)(-)(-)=-{ve}  `


`\Rightarrow \quad f(x) \text { is strictly decreasing for } x<-2 . `


`\text { When }-2<x<1, `


`\therefore \quad(x-1)<0,(x+2)>0,(x-3)<0 `


`\therefore \quad f^{\prime}(x)=(-)(+)(-)=+ \text { ve. }`

`\Rightarrow f(x)`is strictly decreasing for `x<-2.`


When `-2<x<1`,


when
`(x-1)  <0,(x+2)>0,(x-3)<0 `


`\therefore \quad f^{\prime}(x)  =(-)(+)(-)=+ \text { -ve. }`


`\Rightarrow f(x)` is strictly increasing for `-2<x<1`.


When `1<x<3`,
`
`(x-1)  >0,(x+2)>0,(x-3)<0 `


`therefore \quad f^{\prime}(x) ` =(+)(+)(-)= -v e


`Rightarrow f(x)`is strictly decreasing for `1<x<3`.


When `x>3`,


`(x-1)  >0,(x+2)>0,(x-3)>0 `


`therefore \quad f^{\prime}(x)  =(+)(+)(+)=+  { -ve }` 


`Rightarrow f(x)` is strictly increasing for `x>3`,
`\cos x=\sin x`
Hence, `f(x)` is strictly increasing for `-2<x<1, x>3`

ie., on `(-2,1)`, `(3, \infty)` and strictly decreasing for `x<-2,1<x<3` ie.,

on `(-\infty,-2),(1,3)`.



Question 32. Prove that the function `x^2-x+1` is neither

increasing nor decreasing strictly on `(-1,1)`.
 
Solution. Let `f(x)=x^2-x+1`
``
`\therefore \quad f^{\prime}(x)=2 x-1=2\left(x-\frac{1}{2}\right)`
``
 
Now, `f(x)` is strictly increasing if `f^{\prime}(x)>0`


i.e., `\quad 2\left(x-\frac{1}{2}\right)>0 \Rightarrow x-\frac{1}{2}>0 \Rightarrow x>\frac{1}{2}`


Again, `f(x)` is strictly decreasing if `f^{\prime}(x)<0`


i.e., `\quad 2\left(x-\frac{1}{2}\right)<0 \Rightarrow x-\frac{1}{2}<0 \Rightarrow x<\frac{1}{2}`

Thus `f(x)` is strictly increasing on the interval`\left(\frac{1}{2}, 1\right)`

 and strictly decreasing on the interval `\left(-1, \frac{1}{2}\right)`.

 
Hence, the given function is neither increasing nor

 decreasing strictly on the entire interval `(-1,1)`.
 
 
 
Question 33.

Find the least value of `a` such that the function `x^2+a x+1` 

is increasing on `(1,2)`.
 
Solution. Let `f(x)=x^2+a x+1`


`\therefore \quad f^{\prime}(x)=2 x+a`


Now, `\quad 1<x<2 \Rightarrow 2<2 x<4 \Rightarrow 2+a<2 x+a<4+a`


`\Rightarrow \quad 2+a<f^{\prime}(x)<4+a`


For `f(x)` to be increasing, we have `f^{\prime}(x) \geq 0`


Now, `\quad f^{\prime}(x) \geq 0 \Rightarrow 2+a \geq 0 \Rightarrow a \geq-2`
Hence, the least value of `a` such that the function `x^2+a x+1`

is increasing on `(1,2)` is - 2 .