APPLICATION OF DERIVATIVES

(SUM 5 TO 10)

ALL EDUCATION BOARD





Question 5. The Side Of A Square Is Increasing At  a Rate Of  0.2 cm/Sec .Find The Rate Of  Increase Of the Perimeter Of The Square.

Answer. 

Let the  side of square be `x` and the Perimeter of squre be R at time t .

so                                P= `4x`

Rate of change (increase) of side x w.r.t. t =0.2 cm/sec                           (given)

                               `\frac{dx}{dt} `=0.2

so      Rate of change of perimeter =`\frac{dP}{dt} `

                      = `\frac{d}{dt}(4x)=4. \frac{dx}{dt} `

                      = 4 `times` 0.2

                         =0.8 cm/sec.



Question 6. The Radius Of The Circle is Increasing Uniformly At The Rate Of  3 Cm Per Second .At What Rate is The Area Increasing  Whe The Radius Is 10 Cm.

Answer 

Let `r` be the radius of the circle And `A ` be the area of the circle at time `t` .

so      A= `/pi  r^{2}`    

so Rate of change (increase) of radius w.r.t. `t=

              `\frac{dr}{dt} `=3 cm/sec.      {given}

        so       Rate of change of area =`\frac{dA}{dt} `

                   =`\frac{d}{dr} ( \pi  r^{2} ). \frac{dr}{dt}`

                                =`2 \pi r. \frac{dr}{dt}` 

                                            =`2 \pi r \times 3`

                                                        =`6 \pi r  cm^{2}` /sec.

When r =10,the rate of change of area =`6 \pi  \times 10` =`60 \pi   cm^{2}` /sec




Question 7. A Spherical Soap Buble Is Expanding So That Its Radius Is Increasing At The Rate  Of  0.02 Centimeters Per Sec.At What Rate Is The Surface Area Increasing When Its Radius Is 4 cm? (Take `\pi `=3.14).

Answer 

Let r be the radius And S be the surface area of spherical soap bubble at time t.

                                           S=`4\pi r^{2}` 

Rate of change (increase) of radius  w.r.t. time t

                   =`\frac{dr}{dt}`=0.02 cm/sec         ( Which is given)

     Rate of change of surface area =`\frac{dS}{dt}`

                     =`\frac{d}{dr} (4 \pi  r^{2})  \frac{dr}{dt}`

                    =`8 \pi r \frac{dr}{dt}`

                   =`8 \pi r(0.02)`   

                  =`0.16 \pi r`          [ `\frac{dr}{dt}`=0.02 cm/sec ]

      when r =4 ,the rate of change of surface area

                  =0.16`\times`3.14`\times`4 =2.0096 `cm^{2}`/sec.




Question 8 The Radius Of A Circular Soap Bubble Is Increasing At The Rate Of  0.02 cm /sec .Find The Rate Of Increase Of Its Volume When The Radius Is 4 cm.

Answer

Let r be the radius  and  V be the Volume of The Circular Soap Bubble At Time t.

                                        V=`\frac{4}{3} \pi  r^{3}`

   `             \frac{dV}{dr}` =`\frac{4}{3} \times  3\pi  r^{2}`

                              = `4 \pi  r^{2} `

Rate of change  (increase) of radius w.r.t  t = `\frac{dr}{dt}`

              =0.2 cm/sec          {Given}

              So rate of change of volume = `\frac{dV}{dt}` 

              = `\frac{d}{dr}(\frac{4}{3} \pi  r^{3}) .\frac{dr}{dt}`

                  =` \frac{4}{3}` ` \times 3 \pi  r^{2}. \frac{dr}{dt}`

                       =`4 \pi  r^{2}. \frac{dr}{dt}`  

     =`4 \pi  r^{2} \times 0.2` = `0.8 \pi  r^{2}  cm^{3}` /sec

                                                  { `\frac{dr}{dt}`=0.2 cm/sec}

            When r=4, rate of change of volume =

                                     `0.8 \times  (4)^{2} cm^{3}` /sec

                                                 =`12.8 \pi  cm^{3}` /sec


`Question 9 The Surface Area Of A  Spherical Bubble Is Increasing At The Rate Of 2` cm^{3}`/sec.Find The Rate At Which The Volume Of The Bubble Is Increasing At The Instant Its Radius Is 6 cm

Answer

Let r be the radius ,S be the surface area And V be the volume of the  spherical bubble at time t.

                        S=`4 \pi  r^{2}`              And      V= `\frac{4}{3}  \pi  r^{3}`

Rate of change(increase) of Surface area  w.r.t.  t =2`cm^{2}`/sec          [Given]

                                 `\frac{dS}{dt}`=2

`\Rightarrow`          `\frac{d}{dt}(4 \pi  r^{2} )`=2          

`\Rightarrow`           `8 \pi r. \frac{dr}{dt}`=2                  

 `\Rightarrow`   `\frac{dr}{dt}` = `\frac{1}{4 \pi r}`     

                                                                 ...........................1

Also                             V= `\frac{4}{3}  \pi  r^{3}`   

   So Rate of change of Volume w.r.t.    t= `\frac{dV}{dt}`

                     =` \frac{d}{dt}(\frac{4}{3}  \pi  r^{3}) `

                      =`4 \pi  r^{2} . \frac{dr}{dt}`  

 =`4 \pi  r^{2} \times  \frac{1}{4 \pi r}`=r                     [Using 1]

   When r =6,The Rate of change of volume = 6 `cm^{3}`/sec.






Question 10 The Radius Of A Circle Is Increasing At The Rate Of 0.7 cm/sec.What Is The Rate Of Increase Of Its Circumference.

Answer

Let `r` be the radius and `R` be the circumfrence of the circle at time t.

                                 `R`= `2 \pi r`

Rate of change (increase) of  Radius w.r.t.   t =0.7 cm/sec                              

                                                                                [Given]

                                            `\frac{dr}{dt}` =0.7

Rate of change (increase) of circumfrence

                                   = `\frac{dR}{dt}`

                                    = `\frac{d}{dr}(2 \pi r). \frac{dr}{dt}`

                                     =`2 \pi  \times 0.7` 

                        = `2 \times  \frac{22}{7} \times  \frac{7}{10}`

                                       = 4.4 cm/sec.