APPLICATION OF DERIVATIVES

(SUM 1 TO 4)

ALL EDUCATION BOARD






 Question 1 Find the rate of change of the area of  a circle with respect to its radius r. How Fast is the Area changing with respect to the radius when the radius is 3 cm?

Solution :

Radius of circle =` r`

Area of circle = A =` \Pi  r^{2} `

Rate of change of area w.r.t.r=` \frac{dA}{dr} = \frac{d}{dr} ( \Pi  r^{2} )=2 \Pi r`

Rate of change of area when r is `3 cm =2 \Pi  \times 3 = 6 \Pi  cm^{2} `/cm




Question 2 Find the rate of change of volume of the ball with respect to its radius r.How fast is the volume changing with respect to the radius when tyhe radius is 2 m ?

Solution :

Radius of the ball =r

Volume of the ball,V = `\frac{4}{3}  \Pi  r^{3} `


`  Rate of change of volume w.r.t.r= ` \frac{dV}{dr}= \frac{d}{dr}(\frac{4}{3}  \Pi  r^{3})`

                            =`\frac{4}{3} \Pi .3 r^{2}  = 4 \Pi  r^{2} `

Rate of change of volume when r is 2m  = `4 \Pi  (2^{2}) =16 \Pi   m^{3}` /m




Question 3 A balloon which always remains spherical has a variable radius ,Find the rate at which its volume is increasing with the radius  when the later is 10 cm.

Solution :

Let r be the radius  V be the volume of the ballooon.

                                   `V=\frac{4}{3}  \Pi  r^{3}`

Rate of change (increasing) of volume w.r.t.r 

                                 =`\frac{dV}{dr} = \frac{d}{dr} (\frac{4}{3}  \Pi  r^{3} )= 4 \Pi r^{2}`

Rate of change of volume when r is 10 cm = `4 \Pi (10)^{2} =400  \Pi   cm^{3}` / cm




Question 4. The radius of a balloon is increasing at the rate of 10 cm per second. At what rate is the surface area of the balloon increasing when its radius is 15 cm. 

solution :

Solution. Let be the radius of the balloon and S be the surface area of balloon at time t 

                                                        `S= 4 \Pi r^{2} `

Rate of change (increase) of the radius w.r.t. . t = 10 cm/sec. (Given)


                                                      `\frac{dr}{dt} =10`

Rate of change of surface area w.r.t.    

                                       t `= \frac{dS}{dt} =8 \Pi  r .   \frac{dr}{dt} `

                                          `=8 \Pi r \times 10 = 80 \Pi r`

 Rate of change of surface area when ris 15 cm 

                                                                 

`=80 \Pi (15)   cm^{2}` /sec

                                                                  

`=1200 \Pi    cm^{2}` /sec